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ABSTRACT

A model for an ideally polarizable interface is proposed where the

two sides of the interface are described by two interacting classical

one component plasmas of different neutralizing background densities

separated by an impermeable membrane.The statistical mechanics of this

system is solved exactly in two dimensions at the reduced temperature 2.

The one and two body distribution functions, the potential drop,

the differential capacity and the interfacial tension are computed.

The main feature of this model is that the potential drop and not the

surface charge appears as the natural external variable.Several sum rules

are discussed,such as the screening theorems for multipoles, the contact

theorem, and Lippmann's e ation.

A general thermodynamic argument shows that these sum rules remain

valid in three dimensions and for any value of the coupling parameter.



I INTRODUCTION

In recent years there has been much interest in the statistical mechanics

of inhamogeneous charged systems such as the metal electrolyte interface.

Since the real interface is a very complex systemmost of the effort
has been directed to understanding models in which the metal side is
an ideally smooth,hard, charged surface,with or without metal boundary

conditions (image forces).Accordingly , the interface is not treated as
an wholy integrated system, in which the metal and the electrolyte are

both treated at the microscopic level,and this is surely a serious

shortcoming of these models.[l]

For instance, if one considers the interface between a liquid metal

(Hg or Ga) and an aqueous electrolyte solution (e.g. ICd ),it appears

that the main contribution to the interfacial tersion is coming from

the interaction between the metal particles.Since, from Lippmann's
equation, the differential capacity of the interface is the second derivative
of this surface tension with respect to the applied potential, it is

very likely that a sizeable part of this capacity is also due to the

response of the metal.

Indeed this effect has been estimated recently by a model in whicha
the metal is a quantum mechanical jellium (2,31,and more recently
a jellium interface with an ion-dipole mixture has been considered[4,5].
However, this last model,albeit realistic, is very difficult to handle and
we are far from an accurate numerical solution of the statistical mechanics

of this model, Ie must remark that even computer simulations cannot be
performed for such a complex case because of the quantum nature of

the metal,and because the discrete solvent of the ionic solution
will require a number of particles that is too large even for modern

computers.



It seems therefore interesting to study simpler models that may

not be as realistic , but still treat the whole interface

at the microscopic level ,and are more tractable mathematically.In particular

we would like to mimic two different situations that occur in electrochemistry

a)the non polarizable interfacein which the potential drop across

the interface is given by Nernst's equation.The classical example

of this case is the calomel electrode and its behaviour is explained by

the continuous exchange of charged particles between the two sides of

the interface.

b)the polarizable interface in which the potential

drop does depend on. the charge distribution at the interface.

The classical example of thipr case is the mercury-?Na(aq) interface.

For low values of the potential drop across the interface

a change in the externally applied potential will not simply produce
an increase in the ohmic current intensity,but it will polarize the

surfaceproducing an excess surface charge on the metal and in the solution.
Above a certain value of the potential however chemical reactions occur and
electrons flow across the interface: ,At this point the polarizable electrode

becomes unmolarizable and behaves much like case (a).

In the oresent work we consider a 2-dimensional model in which the

two sides of the interface are represented by classicalone component .laamas
(OCP) with different background densities.Of course this is not a realistic

representation of. the metal electrolyte interfacebut this model has the

feature of being exactly,anaiytically solvable :Jancovici and coworkers[6,7,S]

have shown that at the special value of the plasma 'coupling parameter

(or reduced temperature ) -- =2,the partition function and all



the correlation functions of the 2-dimensional OCP can be obtained exactly

On the other hand,as we shall see below,this model reproduces some
of the main features of real interfaces and may be useful in providing

insight about exact relations such as sum rules and the subtle screening

behaviour of Coulomb systems[9].

Recently a solution was found for such a model of the interface
where the charged particles (ions) are free to move everywhere

[10,ll].In this case the potential drop across the
interface depends only on the difference in the chemical

potentials of the bulk phases, and any surface charge distribution is
perfectly screened by the mobile ions,giving no contribution to the
potential drop.Clearly, this model mimics the behaviour of the non

polarizable electrode.

In the present paper we present a generalization of this model
which mimics the behaviour of the polarizable interface.For that purpose
we introduce an impermeable membrane between the two media,which prevents the
ions from moving across the interfacewhile allowing the electrostatic
interactions among all ions and background charge.Indeed a completely

impermeable membrane is unlikely to exist in nature, and there is always some

small but finite current which leaks across the interface.In a limited range

of applied potentialhowever, a system like Hg-FNa(aq.),can be considered

as ideally polarizablebecause the leakage current is extremely small.

We must point out that in real systems, the concept of an..ideally
polarizable electrode does not imply the existence of a zero width ,

mathematical surface ,but there could be a region of limited extent where

all particles could coexist [12).

We shall not consider this case here because it.is more complex than

the former one.



In section 2 we describe the model and the method of solution.

Section 3 is devoted to the discussion of 1 and 2 particle density

functions,and related sum rules.In Section 4 we compute the

total potential drop across the interface, and show that in our model

this is indeed the natural external variable,while the surface

charge is calculated by means of a closed formula from it.In this

sense our model differs from most of the literature, where the charge

is the externally fixed variable and the potential drop is calculated

from it.The thermodynamics of the system is discussed in Section 5 and

pertinent sum rules are given:in particular Lippmann's equation

and the contact theorem for this case are deduced. The last section

is devoted to a brief discussion of the results.

A short communication of these results has been presented elsewhere[13].

II- MODEL AND METHOD OF SOLUTION

Following the method of Jancovici [8] we start with a system

of circular symmetry.In our case it consists of two concentric circles

of radii RE and R.

The inner region (O<r<R4 ) has backgr'ound charge density -ec%/ ,where

e is the elementary charge,and contains N4 particules of charge e

This circle is also the impermeable surface that prevents the

charged particles from changing sides.

We want to allow for an excess charge density -ee'4. along the wall

then we must have

4 (2.1)



The outer region (R <r<RL) has background density -eot,, ,excess

charge density ev/, and contains 17, particules of charge e.9ence

L (2.2)

the system is thus globally neutral.The thermodynamic limit is obtained

letting the number of particles and the radii go to infinity with , K

and O- constant.

The plasma coupling parameter is 1'js!t I where &-l/kT is the thermal

Boltzmann factor and T is the temperature.

The Coulomb potential between two particles at a distance r is

TCv)--- ' where L is scme scaling length.

The first step is to compute the total potential energy of

the system. We findeo

V.Vn + 4.1 L +( .. GeI .

&a I o I 2~.

where r.iis the position of ion iu and %is a constant background terin

Note that the excess charge density @0' does not appear explicitly

in (2.3) and (2.4).

In computing the canonical partition function# the angular integrations

can be readily performed expanding a Vandermonde determinant [7,8]

and we get

s~i,,,, -C < 0,., t~i
L n t ...... I II.-6..



where " is the permutation operator of all particles.

This can be written f.!

where n2 a V +IT. pO W (2.0\

and e? is the permutation operator that exchanges the JI-els {0,.L-1}
with labels [1 ,N-I} in all possible ways.

Introducing the functions

and

where

is the incomplete gamma function,we get

This can be written in a more convenient form factorizing the term

h s o "Z o ffI

,e find

z __

where

7C*' 7"T '4c ( ii 9 /(Vc" U. io\
the ge neAat n

and L....j is the generating function

_O
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where .r.,at

In (2.11) it appears that in the limit R. ,R ->Oo,the dominant values

of the arguments of the summations are those with indices close to N.

The incomplete gamma function can be expanded in this limit using the

asytotic formula [8]

where

anrd r% 7v,-

is the complementary error function.

This yields,after some manipulations

where

y (\ = n. 1

and r:enc &
The deviations of L-1 from unity are due to surfacepcontributions.

In a first approximation,we can simply neglect these contributions.

This will be a mean field approximation (AFA) .The neglect of the

variation of the indices in the computation of &Zj constitutes a second

apprnx1Mticn whiich will be found to be rs I sigly acmnrAte.
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a) .The mean field approximation (MFA)

3ince L_ -1 we have

This approximation has a physical meaning:It is clear that

that is the partition function of the uncoupled system where one

neglects the correlations of the charge fluctuations between the two

sides of the interface.In this sense it is a bona fide mean field

approximation.The system is the superposition of two subsystems:The inner

OCP enclosed by a ring of radius Rwith charge density 0-/.

and the outer OCP enclosing the charged ring of radius R and charge

density - ao/* .

These cases have been already solve] in the literature[(,14],so

that we merely quote the results for the partition function and the

one body *ensity.For the inner circle subsystem

4 W4! q' , ft-O

where V," is the constant background term

and for the outer ring subsystem

~U ~.Jrt( TC1  I q~
where

z~~~~R t.~1'~1 %b

and the particles have been relabelled from {OM -1) to {N.,-1}.

It can be easily verified that _ Ve,0 *VON
O " -



he nce

In the limit of a%planaro interface (R., R->c), the corresponding one

particle density profile is [8,14]

with origin of coordinates at the wall.(x-r-R.).

In two dimensions r -2 corresponds a somewhat weak coupling

for the bulk ions,so we can expext that this mean field approximation

will yield sensible results for not too large surface charges.

We think that for any realistic model of the interface this will be

a first approximation.If we also neglect the contributions of the metal side

(say,the RHS of the interface), then we will recover a model of the interface

similar to the one discussed in most of the literature(the"primitive electrode

b) Second aEroximation.

A better,perhaps not as transparent physically,approximation

can be obtained by neglecting end terms in the summations (2.11).

Using the identity

I-"i |I ,," Jm . t,"t

r 4 n,-4 ,ai II-? ,I-I t* j

. , n+ .... (.* .*I .am~.

which shows that the terms neglected by extending the sums at the ends
of the intervals are small (see(2.13)).Then we vrite

,+ hSA ISK11 ne 0 C
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t4

OAI 'at o""" at, W1" '.l 1
1 WaS f m- _..a_ V4M * (Xm' .' ..t

In the limit N. ->o , the sums can be replaced by intdgrals over

the new variable tm and using the formula

we get

where

which can be recognized as the expansion of the modified Bessel function

Asymptotically

so that

We shall discuss this interesting approximation below.

C) Exact solution...

Instead of using (2.11) to compute FS the exact partition function

of the coupled system,we could represent it in a much more compact form

using a device similar to a grand canonical ensemble calculation.Consider



now that all narticles are indistinguishable and can move freely

throughout the entire system,but assume that the particles of the inner

region have a fugacity z. different from that of the outer region,which

we take as the reference and set it to the value of 1.

It is straightforward to see that the partition function is the

coefficient of in the polynomial

W-1

which can also be written

Using the theorem of residues, we finally get

r-At
-~~ + 4-.4.

which can be evaluated asymptotically by the method of steepest descents.

The path of integration is a circle centered at the origin.

refine
W4

. + 
I~i -- ! ,- .

then

The saddle point is located at the positive real .axis .The location

of the saddle point is found by solving the equation

j



-VL + LL rZ. 0X3"\_

Taking again the limit of an infinitely large system,and changing to

the variable t r OJRIL- p-

this equation becomes

For m- I we have (.b

so that .- @. -'
and zoJ-l.In the general case this equation must be solved numerically

for given values of the surface charge density eo'.

Now we take s o. !G) and then integral (2.32) yields

where IT

Equations (2.9),(2.35) and(2.36) are the exact answers for the

partition function in the fully coupled case.

4s one would expect in the asymptotic limit of a large system, -7L-
is proportional to thesurface& of the interface.Hence the Relmhoitz
free energy of the coupled system differs only by a surface term $from the

free energy of the uncoupled system:

f .Al. , WO

,, - -- , m,, "- i . mm n I .... nn n 14__e



This equation gives the thermodynamic properties of our model:It

will be discussed in detail in section 5.

A very good approximation of the exact solution of the saddle point

equation (2.34) can be obtained if we assume that

arnd expand in the small variable .X) 3 or in (2.34).We find to first order
3 /

where K, and K are defined in (2.25).The same procedure applied to (2.37)

yields

But this is also the result obtainqd directly from (2.27).Hence this

approximation is strictly equivalent to the one of subsection (2-b).

3.DSNSITY PROFILE AND PAIR CORRELATION FUNCTIONS

The same methods used in obtaining the partition function can be

used in obtaining the one and two body correlation functions.

a) Rensit .rof ile.

From equation (2.28) we find that the density profile is for r<R

ILI

enre, L is the coefficit of in the r

Hence,after some manipulations,we get



p ~ (r ZiriI :: a

where 4 - , C-- ,

e

Similarly, for r>R

where

1P'RO2~&

In the plane interface limit we use again the asymptotic expansion

of the incomplete gamma function and replace the sums by integrals over

t .The asymptotic behaviour of the contour integrals is again obtained

by steepest descents.The saddle point is located at the same position 3
as before.

After some manipulations we obtainlot , C, r -.(-.,X , ,Aj . & X. .4 <
4P

"ACV iO nC3. If

which can be written in a more compact form

where



2,d,) ,Y > 0
Although the physics of the .present model is not quite the same as that

of the permeable membrane [lOllI,it is interesting.to note that we

recover the density profile of this case when 3 ,-l.In this former case

the density of mobile ions was always continuous ln the present model,however,

there is a discontinuity in the density profile at the interface:

,o. l

For m-l (at,-a e12.-. ) these contact values can be computed explicitly

For mi and 0'-0 one obtains the expected result

Y( Y,) constant

which meani that the system behaves as if there would be no wall.

The approximation of subsection (2-b) is of interest because the

density profile P(x)is the sum of the density of the MFA plus a perturbation.

using (2.38) we find

i 04 f +~ Af ~J(X\ N
where 6 + 'A s W.. ,-,,- ')

ft e.eS VIL- zT
KZ

where ic) is given by (2.21). fa'PS"(cp 3"
The integrals in (3.5) and (3.9) have been computed numerically

for the case 01 -1, OL74 and 0- -. The density profiles are shown

in figure ltoqather with that of the uncoupled system. Indeed,approxjimation
of subsection (2-b) (or 3.9) is very accurate.



The electroneutrality conditions on each side of the interface imply:

In Appendix A we show that these relations can be derived from

(2.34) ,the equation for the saddle point.This constitutes an alternative

way of calculating from the suface charge density e(.

The approximate solution of section (2-b) satisfies this condition exactly.

b) Two body correlations.

To discuss the 2-body correlation functions we need to consider

the three cases of both ions on side l,both ions on side 2 and one ion

on each side of the interface.Since the derivations are very similarwe shall

give the details for the last case only

It will be convenient to use a complex number representation of the position

of the ions (Janccvici 16]) z-x+iy-r exp(iO).Then similarly to (3.1 ) we have

or I I

where is the coefficient of 2 in the polynomialN -I

After some manipulations we get the following expression for the

truncated two body density:

re-A-

7- "z - ,zI Zi

In the plane surface limit again by the method of steepest descents

we obtain



II

-- +

where S. is the same saddle point as before.Using the expression (2.12)

for the incomplete gamma function,and replacing the sum by an integral

over t,we find

f~().~~c,~j0 Ule +e M C~ eG
where y=y -y, .In the general case we have

- 1;,2C.

where g(x) is given by (3.6).

This result beccmes identical to the one for the permeable membrane[lO,

when C3 =1.By an analysis similar to that of Jancovici (8,10] we can see

that in the exact solution there. will be no long ranged corielations alcng

the interface: f decays exponentially as a function of y.In the MFA however

the pair correlation function along the interface will decay only as

because In this approximation each side of the interface is like an OCP

face an insulating ,charged surface [8).

Our results are in accordance with Jancovici's conjecture that short

ranged decay of the pair correlation function is a general feature of

the interface between two conducting mediallO].



.46

The behaviour off(x4 ,xly ) for the same case as figure I is shown in.r 4

figures 2,3 and 4 for different locations of the particule 2 in the RHS of the

membrane.In figure 4,the correlations are almost those of the bulk phase[6]

Because of the fast decay of the correlation function in all directions

the correlation functions will obey the theorems concerning the nonexistence

of multipoles ,that is any finite size fixed multipole will be perfectly

screened[161 .In appendix B we show explicitly that both the monopole and

dipole sum rules are indeed satisfied.

4- POTENTIAL DROP AND DIFFERENTIAL CAPACITY

a) Potential drop

The potential drop across the.interface - - f( -  \

can be calculated by computing the first moment of the charge profile

C

~00

The integration can be performed very easily for m-l,with the explicit

resul t

Femembering that . was introduced as the ratio of the fugacities

on bcth sides of the interface,it is evident that there must be a relation

connecting the potential drop o to .Indeed we have

where and fI are the chemical potentials in the two bulk phases.For

0 -2 one has t

40 ! ILIII...

0(,



hence (4. 3) becomes & . e hp

Relations (4.3) or (4.5) reflect the fact that an impermeable

membrane renders invalid the internal thermodynamic equilibrium condition

00 a fA +a (4").

In the permeable interface case (4.6) holds [17] so that necessarily -i.

This explains the results found above for the one and two body density

functions.

It is now clear that our model behaves like an ideally polarizable

interface.While in the permeable case the potential drop always satisfies (4.6)

this is not true anymore for the present model, and & can be considered

as an external variable:For a given value of &,Ywe compute the density

profile from (3.4) and then, the surface charge density from the

electroneutrality condition (3.10).On the contrary,in the primitive

electrode (a plasma near a charged wall) the surface charge is the natural

external variable.This is an interesting feature of this microscopic

model which compares well with the experimental situation where the potential

drop across the interface is fixed externally.

The approximation of section (2-b) gives the following expression for a

&Yf Z Y + K r(iYa x&V'' - [ ,: .,l X ¢--,,} (4.

where hyo is the potential drop of the MPA.

(4.7) does not satisfy the exact relation (4.5).

Figure 5 shows the relation between the potential drop and the

surface charge for the primitive electrode and for the exact solution of

the full coupled model.In the scale of the figure,the MPA,approximation (2-b)

and the exact solution are indiscernable.However,the potentials of zero

charge are zero for the MA ,.142 for (2-b) ,and .114 for the exact solution.

,I oc negative charges the behaviour of the primitive n--al .s totally

diffrent from the coupled model.



20

b) Differential capacity.

quantity of central interest in experimental electrochemistry is the

differential capacity.This quantity has often been used to characterize

the polarizanle interface. It is defined by C = ,_ (e_ '

Since from (4.5)
OZ-- - 2M,

we can calculate C as a function of_ 3and hence as a function of

the potential drop Using the electroneutrality relation (3.10) and (3.4)

we find #

7r ~ - E3. XC&)) 3a

For m-i and &f=0 (-1), the integral can be performed explicitly

and gives

In figure 6 we show the dependence of C with the potential.It is amusing

to note that the shape of the curve has a hump instead of the usual dip

of the theory of the diffuse layer [18,1] .This hump is present

in many experimental curves, and has generated considerable controversy

about its origin.The explanation of the hump in our model is based

on the fact that because the two sides of the interface have always

opposite charges, the mobile ions on one of those sides are pushed

away from the interface.The distance between the center of the excess

charges of the positive and negative sides of the interface will increase

with the charge (or the potential).The capacity is therefore maximum when

this distance is smallest,which occurs near (but not exactly,except in the

case m-1) the point of zero charge (p.z.c).

In the MFA the capacity curve has this same qualitative behaviour, but

notice that this effect does not exist in the pri:,itive electrode

( C->ao for



5-.TBHERM ODy ICS AND SUK TWLCS

In the particular geometry of our model, the excess Relmholtz free

energy of the system can be separated ,for large R4 , into a bulk contribution

which is proportional to R4  , and a surface contribution which grows as R

F z 7C 2oR.*je

where

u-o. F ,

and

In the FA the surface excess free energy is

S- Z

where [141 + 4i-. / d&- _

L7C itI X se

'~'~A And a ()o

(In [141 the first term of the right hand side of (5.3) does not

exist because Smith considers the excess free energy caused by the

increase of the surface charge density fr.om 0 to ,while keeping

the number of particles constant)

For the coupled system we have

C" !

where is given by (2.37).

a) 3urface tension and Lippoann's equation

Consider now the derivative of the surface energy with respect to



the surface charge density 
I $

From (141, we know that

S

where Lye is the potential drop in the MFA,given by (4.8).

For a charged fluid in the presence of a charged hard wall,relation

(5.5) is merely a consequence of the linearity of the Hamiltonian in the

external field due to the charge density on the wall [14,20]

(E)= .(E e X, +background term C

For our model eq.(5.6) is not an exact one because we are ignoring

fluctuation terms due to correlations of charge distributions across

the interface.Indeed (5.6) is the MFA Hamiltonian.

Now,from (2.37) we have

[- [r

where we have used (2.34) to eliminate ILO

Hence

an using (4.5) we get finally

fp! tbc



which is similar to (5.5) ,but where the free energy andYpotential drop

are now the exact quantities, rather than approximations.

Therefore,the fluctuation terms neglected in (5.6) make no contribution

to this thermodynamic relation.We remark also that for the permeable

interface,because of (4.6),eq (5.3) simply means that the system adjusts

to minimize its surface free energy.

As shown elsewhere in [21] a relation of the kind of (5.S)

implies the Lippmann equation of electrochemistry [181.

Consider the interfacial tension r of our system,defined by

U.T (5i, CL

where 0r is the volume of the system,A is the area of the interface,and Q

the surface charge ( Q-edA).We have the following relation between ' and 3 s

(note that r and fare identical only when O"-0).Hence

(SZ)

where (5.3) has been used .We finally obtain,considering as our external

variable

which is the standard form of Lippmann's equation [it].

We note that we have given here a statistical mechanical,microscopic

derivation of this equation,for this particular model.The usual

proof of this equation involves only thermodynamic argumentsalthough

there have been recently several attempts of microscopic derivations [12,22-24]
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Quite surprisingly it can be shown analytically,that the

approximate surface free energy (2.40) also verifies Lippmann's equation.

Figure 7 shows the dependence of the surface tension

calculated from (5.4) and (5.11) with the applied potential.This

curve is known to the electrochemists as the electrocapillarity

curve.As in the case of the differential capacity,this curve also

mimics real systems behaviour with the characteristic inverted parabolic shape

Since Lippmanns equation implies that the surface charge is the slope

of the electrocapillarity curve the point of zero charge corresponds to its

maximum.

5-b) Other sum rules

For an OCP near a charged hard surface the following sum rule is

true [211

where jo is the bulk density and f(x) is the local electrostatic

potential.

In the present model it is clear that relation (5.14) holds for each

side of the interface separately in the MFA. We show in appendix C that

it is also true for the exact solution.Bence we have

-'~r -ej A~]

where we have used Poisson's equation.These are new sum rules for this model

involving the second moment of the charge density distribution.



These relations are also valid for the case of the permeable interface.

When m-1 (si,- ct ) we have the simple relation

A last sum rule is the so called *contact theoremS.For the permeable

interface it has been shown that [17]

ft 00 1'~i ft 1 (S I

where P and P are the bulk pressures on both sides of the interface.

The presence of the impenetrable membrane modifies this relation.We now have

as shown in appendix C.Note that the surface charge density does not appear

explicitly.When m-i (5.11) gives

.4si 7C /e 'M~

which is equivalent to (3.8) the equation for the jump in ion density

at the interface.

After some straightforward, but lenghty manipulations,it can be

shown that the approximate solution (2-b) has the remarkable feature

of satisfying both (5.1S) and (5.18).

5-c) General derivation of the preceding sum rules.

The sum rules of the preceding section are also true for the

general ,three dimensional interface of two OCP at an arbitrary coupling.

This can be shown by an extension of the argument used elsewhere (25]

JI



which consists in studying the variation 9F of the Belmholtz free energy

produced by a variation of the background density 7t'lor of some

external one body potential p.kJ,while holding the number of particles

and the temperature fixed.

From the definition of the Helmholtz free energy we have in general

The second term of the RHS of (5.20) is due to the constant neutralizing

background.

Consider now a system consisting of two slabs,one of background

density !. extending from -L<x<O,and another slab of density ) going from

O<x<L.Eventually we will take the limit L->G.The impenetrable membrane

is located at x-O and can be represented by the external potential

for all particles of the left hand side

X >a

for all particles of the right hand side

The electroneutrality conditions imply that

where A is the area of the interface.

Consider now the variation ;rin the free energy when the position of

the impenetrable wall is displaced by an infinitesimal distance L



while holding A,N41NI, a, and T at a fixed value.

The left hand side now goes from -L to ;L and has background densityL(O.-s ,
IL

The right hand side extends from L to L and has density -d~-

Since A,N ,N., and 0" are constant,we have

.4, L .* E. I. - %E - s, .- o (sz "

(S I

and the volumes of each side of the interface change by the amount

Lr z.A 7L

(5.20) becomes

Writing I-~ 0 - '0

and using (5.13) ,we find after some calculations

F A c (]- A~ {c .(y fi(0'1 -~ Oct~f(*

Introducing the functions y(x) is a standard device in the theory of fluids

with hard repulsive cores.The essential feature of these functions is that

they must be continuous across the interface.

In equation (5.27) we see that the free energy variation has a

volume and a surface contribution,which are readily identified with

thermodynamic quantities:

F IP II . -P ;J-" + A "j 
6..



The presence of the surface term in (5.28! is again a manifestation of the

existence of a neutralizing background.A similar term will also be present

if one of the sides is a quantum mechanical jellium [261

From (5.23) and (5.24) we get for (5.28)

F A~~~ A L_4 L- e

Comparing the volume term of (5.271) and (5.29) we get the contact theorem

(5.18). The surface term yields

0O

-,.,.,' -, _v.,, - - --,_..- ,--,J, , .¢e,-,f ,7,

This relation is weaker than (5.15).We conjecture, however, that relations

(5.15) and (5.16) are valid for all couplings in two and three dimensions.

6-CONCLUS IONS

In the present paper we have solved exactly in two dimensions

and for a special temperature the statistical mechanics of the interface

between two charged one component plasmas separated by an impermeable

membrane.The interesting fact about this model is that it treats the

entire double layer,the'metalo and the *electrolyte" side,on

an equal footing,and it can be switched from the polarizable to nonpolarizable

behaviour.The above calculations could be easily extended to more complex

situations.For instance in Appendix D,the case when the membrane itself

has a fixed charge density is discussed.

Another solvable case is that of several contiguous impermeable

membranes separating plasmas of different charge densities.
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From the microscopic point of viewan important result of this paper is that

the existence of an impermeable membrane is strictly equivalent to a step

variation in the fugacity of the mobile ions.For the permeable membrane

there is no discontinuity, and therefore the potential drop across the

interface is constant.This is perhaps the first rigorous illustration

of the fact that an ideally polarizable electrode exists only when there is

no miscibility between the two phases.

In conclusion the behaviour of this model exhibits a remarkable

ressemblance to that of real electrodes:the potential drop across the interface

is the natural external variable (and not the surface charge density)

Lippmann's equation is verified,the shape of the electrocapillarity

and capacity curves shares common features with experiment.

The remarkable fact that such widely different systems have similar

characteristic behaviour,seems to imply that they are not very sensitive to

the structural details of the interface.
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APPE- DIX A: ELECTRONEUTRALITY CONDITION

Consider the left hand side of the interface (x<O).From (3.4)

we 7et

0~ ~ 4  d' 0 trfs(E0- "1e

Hence

(rC"t -) A jr-0- ico

T oL.u j r' 4CA

+

3.X( ) 3

Hence r4 G- .. __ __

~i

IIII { J II II I \ I I ......... .. I + J fI I .L~

1?0

jI Fo - L)vj -- ja - J 3W

Then, using (2.34) we readily obtain the elettroneutrality relation (3.10).

The procedure is analogous for x>0.



APPENDIX 3:M]ULTIPOLE 3U'1 RULES

The first and second multipole sum rules are

a nd I.

Li: J (

Consider first (3.1)

From (3.15) we have

.0 *" 5.. ) . iL42
where r

Rence

Performing the 1as[ integration we find (3.1).l

Consider no'q (3.2) ,which, by use of (3.1) can be rewritten

-0ee

016)i

X i4



W • have

Z- U,.

1 ' 4T , ,,

-e4O e"

The last term between brackets is the derivative of the denominator.

Integration by parts finally yields (B.5).



APPENDIX C:VERIFICATION OF SUM RULES

We first consider the sum rule

from (3.4) we get

Ine CEU4I C elf (C~

which can be written

Now we split the domain of integration in the two intervals

-c, O I, [ vr/2 ,ool,and we regroup the terms to insure convergence

when t->-o.This yields

#L
Jact e . '4e. C _____.0_____ ____ -

Using the relations (2.37) ,(5.3) and (5.4), which definefand

the saddle point equation (2.34) to eliminate 2 ± ,it is easy to

fee that (C.4) is nothing but

The calculation 1, similar for the left hand side and also for the

symmetric case u-l.

:I1
4'



We verify now contact the theorem (5.18):

From (3.4) we have

' " " ' ' " r- ;L fL L.e.-,ce.) -. 'cJ .

cc S.

which can be written
0

After similar .anipulaticns,we aet

whichcan e writen

.t
S .. 1

I~W I4 II J4% I

After similar m________________ge

Bence we have + ~fe~(I)i(' )i.

ry~e)- Yee _______ 1



where we have used

4..

- -

But from (3.4) we have al-so

(o) -

j,,

Adding (C.8) and (C.IO) we finally recover the contact theorem (5.12).

(Pw.S (. forV'-2 -2

,i



APPENDIX D:CIARGED MEMBRANE

The model proposed in this paper can be extended easily to the

case where there are fixed charge distributions on each side of the

interface.

Consider,for instance,the case of two charged rings,one of radius

R -1 and surface charge density e ,and the other of radius R, +
4;

and surface charge density PC &/rA

Let J->O.This is equivalent to say that the impermeable membrane

has now a charge density (_e. = (_- +a-

7E 7C

The calculation follows the same line as before with only some

minor changes (see also [111).The electroneutrality conditions (2.1)

and (2.2) become

hr R2f j,Rz al at t

and there is an extra term

in the expression (2.3) of the potential energy.

In (2.6) we now have

and X&zvL ____

instead of (2.13)..
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Furthermore we now have dO < instead of 0' ,in all the integrals

over t.For instance,the saddle point equation (2.34) reads

and 3 is now a functicn of C and o (and not only of o-
.42.

The one and two body distribution functions are still given respectively

by (3.4) and (3.15) and all the sum rules hold.

Contrary to the case of the permeable interface (11],the potential

dro If across the interface, depends on the distribution of charges

at the interface:the surface charge distributions of the interface are not

screened anymore.
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FIGURE CAPTIONS

Figure l:Density profile for mu-0.5 and Vk-l.Units are e-01-1l.(*=..I')

Figure 2:Level curves of the two body truncated density correlation

function.Same case as Figure 1.Particle 2 is at the wall on the RHS.

Figure 3:3&me as figure 2.Particle 2 has coordinates (.5,0).

Figure 4:Sarne as figure 2.Particle 2 has coordinates (1,0).

Figure 5:Potential drop versus surface charge density.The primitive

electrode is comoared to the full coupled model. (m.5)

Figure 6:0ifferential capacity versus potential droo.Comparison of the

pri-iitive electrode to the full coupled model. (m-.5)

Figure 7:2lectrocapilarity curve.(m-.5).(.:. iv'
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ABSTRACT

A microscopic model for the metal-solution interface is presented, which, for the first time, includes
both a non-ideal treatment of the metal and a molecular model for the solution side. The metal is
described by a jellium model including electron-ion pseudo-potential. The solution is treated as a maxture
of hard spheres with point dipoles (solvent molecules) or point charges (ions). The statistical mechanics is
solved using mean spherical approximation. No a priori separation is introduced between compact and
diffuse layers. A simplified version of the model is applied to the case of Hg-DMSO systems.

INTRODUCTION

The classical theories of the ideal polarized electrode are based on two premisses:
(1) The metal has no direct effect on the differential capacitance C. although it

does determine the potential of zero charge and affects the orientation of solvent
molecules. From an electrostatic viewpoint, every metal acts in just the same way,
the only interaction being that of ideal images.

(2) The solution side has two layers: the external, or diffuse layer, which can be
described by such simple models as the Gouy-Chapman (GC) theory, and the
internal, or compact layer, which in the absence of specific adsorption is formed
only by solvent molecules.

These two premisses are now being challenged. The recent important progress in
the theory of metals and metal surfaces makes it difficult to admit. that the metal is
totally unresponsive to changes in the electrolyte. The surface charge distribution in
the metal must respond to local changes in the electrostatic field produced by
modifications in the ionic and solvent distributions. This will surely produce



contributions to the differential capacitance that will be different for each metal.
since the response to an external field is different for each metal, and depends on
details of the electronic structure near the surface. In previous work [1-31 an
estimate of these effects was given. The solution side was represented by a layer of
dielectric material. In a recent publication, W. Schmickler [4] has discussed a similar
model. His conclusions about the role of the metal are similar to ours.

On the solution side, recent advances in the treatment of molecular solutions [5.6].
i.e. solutions in which the solvent is not treated as a continuum, have made it
possible to treat the statistical mechanics of the solution side of the electrode
interface. Although the approach, in principle, can handle realistic models of
solvents and ions, the initial work has dealt with a model in which the solvent is
represented by hard spheres with point dipoles (71. This work has revealed two
important deficiencies of the classical treatment:

(I) The separation of the inner and outer layers for the solvent orientation process
(or better polarization) implies a violation of Maxwell's equations. The dipoles of the
solvent are oriented wherever there is an electric field, i.e., throughout the entire
electric double layer.

(2) The use of local dielectric constants is also unwarranted. Although this is a
much more subtle problem, recent theoretical work [8J has shown that dielectric
constants have a clear meaning only for large systems (thermodynamic limit) and
not at the molecular level. The polarization is the local variable that is required.

In this work we present a comprehensive theory in which all of these concepts are
included. In section (1) we review the models of the metal and solutions sides of the
interface. The potential drop and capacitance are then computed using a simple
GMSA (generalized mean spherical approximation)-based model which has the
obvious advantages of analyticity and simplicity.

In section (11) we discuss the electronic density profile of this model. We then
consider a model in which the physical parameters are those of an alkali-ion in
DMSO in the neighbourhood of a mercury electrode.

In our model the point of zero charge is not the point of zero potential (which is
the case in the restricted primitive model): we also discuss the change in the surface
potential of the metal induced by the presence of the solution. The influence of some
of the parameters, and detailed comparison between Hg and Ga electrodes, will be
discussed in future work.

In section (V) we examine possible improvements in our work.

(1) MODEL FOR SURFACE INTERACTiONS

Consider a plane, ideally smooth electrode, where : is the distance from the metal
surface. The bulk metal is then given when z - - o. For the metal we use a jellium
model (with inclusion of the electron-ion pseudo-potential). The details are given in
ref. 9, but for completeness we will give an outline of this work. The metal ions are
taken as a continuum of density p for z < 0. In other words
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where O(x) is the Heaviside function

O(x)- I x>0

9(x)0 x<O

The electronic gas is free to move. but its equilibrium distribution n(:) will be
that which minimizes the total surface energy of the system. The eleciron-ionic
background interaction is given by a pseudo-potential. The properties of the electron
gas, such as the kinetic, exchange and correlation energies are computed using the
local approximation.

On the solution side the ions are represented by hard spheres of diameter a, and
charge ± e *, and bulk density p. The solvent is also represented by hard spheres of
diameter o, point dipole 1i and density pd.

We assume that no chemical reaction can take place, and no miscibility occurs

between the phases 1101. However, this model does not exclude the existence of a
surface layer in which all the particles are present. In fact. the existence of this layer
is consistent with contemporary theories of the metallic surfaces. Any model which
does not include this layer leads to predictions which are incompatible with
experiments [1.1 1].

In our model, the electrons can diffuse into the ionic solution. In actual practice.
calculations show that both in the interface with the vacuum 112]. or with a dielectric
film (9], the electron density spill-over is very small. However, the change in the
spill-over with the electrode charge will give a direct contribution of the metal to the
differential capacitance (1,41.

The metal electrons in the solution are subject to electrostatic interactions
(electron-ion and electron-dipole) but also to a repulsion due to the core electrons
of ions and solvent molecules, These are represented by the Harrison repulsive
potential (9].

There are several parameters in our model that are fixed a priori, but which
should come out of a first-principles calculation. One of these quantities is the
distance of closest approach of the ions and solvent to the plane z = 0 (the metal
surface). We will assume that it is just the sum of the molecular radius of the solvent
or ions (which for this simple model are considered to be equal) and the radius of
the metallic ion. In reality, this parameter should arise from a self-consistent density
functional calculation [ 13].

In short, we will assume that there is an ideally smooth wall, located at z - 8.
which cannot be penetrated by either ions or solvent molecules. The distances of
closest approach are

Z.o. - 8 + o2 for ions

Z,., - a + 0"/2 for solvent molecules

We use Bohr atomic units: e - electron charge: - electron mass: - - I. BCth radius: a. - 0.0529

nm. Energ unit: I Hantree , 27.2 eV.
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There is also the problem of sirface smoothness and structure. From recent
experimental evidence, it is known that certain metal surfaces are subject to
structural changes during chemisorption processes. In these cases the surface over-
layer changes its structure. It is quite conceivable that in an intrinsically more labile
environment such as that of liquid metals, the metal overlayer would also respond
structurally to changes in potential.

Furthermore, the question of surface ripples (capillary waves) at the interface,
and its effects on the structure and thermodynamics of the electrode is not discussed.
We hope to address these and other questions in future work.

Summarizing, the ions and dipoles in the solution are not seen simply as a hard.
charged surface, but rather the sum of a charged surface (located at 8 + a/2) and a
distribution of electron density beyond the plane of closest approach.

Even this simple model is not easily amenable to a complete numerical calcula-
tion. We will, therefore, in this first communication, use a simplified theory that has
the advantage of giving explicit analytic expressions for the physically relevant
quantities.

(I) A SIMPLIFIED MODEL

For simplicity, we shall discuss only the restricted model in which a- = a+ . a
ad - a (although not in published form, the results for a. - o- -, a are also availa-
ble). We also neglect the effects of the electron density on molecules and ions in the
solution. We shall leave the discussion of the validity of this assumption for the
future (see also ref. 3 for a first discussion of this effect). The solution is represented
by the MSA [5,6] which is only qualitatively correct. Near a charged interphase a
simplified theory, valid presumably for dilute solutions, has been developed by Blum

I-

ionic densily

Fig. 1. Simplified model of the interface: 8 - position of the ideaUy smooth wall; a - diameter of the ions
and solvent molecules.

7I
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and co-worker [7]. In this theory, the dipolar interactions are decoupled from the
ionic distributions, which are given by the modified Gouy-Chapman (MGC) theory.
We are thus satisfying the electrostatic part of the contact density theorem. The
simplified model of the interface is given on Fig. 1.

The charge density profile is given by
qi (z)- -gq~e-' -') (1)

where i is Debye's inverse length and

d, - 8 + o/2

The total excess charge of the solution side is

q.- fdzqi(z)- -qM (2)41

The electronic density profile is postulated to be of the form [1,9]

n (z ) -, [ - - e a'- -] z zo (3)

" (n/2)e- (" - O) z Zo

where n is the bulk metallic electron density. Clearly, the total excess charge on the
metal side is

qM- dz[pe(-z) - n(z)] - -nzo (4)

This last relation also defines zo.
For a given value of a, and q,, the charge and polarization (P(z)) profiles are

computed from the theory [7]. These in turn yield the potential V(z) and electric
field E(z), which are obtained by solving Poisson's equation

aE(z) a'V(Z) -
- az 2  41r p$(-z)-n(z)

+O(z-d 1)( # &P(z) (5)

The potential V(z) is continuous in all space. Because of the discontinuities in the
density profiles, V(z) has a different form in the regions

(I) -cc <zO

(II) 0 < z e d,

(II) d, < z < oo

The solution of eqn. (5) is straightforward, and is explained in Appendix I. The
total potential drop across the interface is

4 .,rI. (do 
AV-V( 4)V(- ) 2) 2

4- ir Mz0 Go(6)
41 P(Z,,



The integral in this expression is explicitly known. The reader is referred to ref. 7
(eqn. 1S) for the derivation. The result is

Of'd.-P(-) - lim P(s)

The Laplace transform P(s) is

z - 4 ILpd PIA4 rq, I

xd' I F3 F3 ,,, + s A(s
X#6 !_aL13 IL 2+20, (s)1. .Csd, (7)

Here pd is the bulk number density of solvent molecules. The coefficients /, /3 and
1,2 are functions of the bulk dielectric constant e of the solvent. and are given

through an auxiliary parameter X
36 ' # 1812 - (8

2+2 + A 1 2 (8)

The auxiliary parameter A is computed from the equation

(-X 2(1 + X)4/16 (8')

The functions 0,(s) and A(s) are defined by

-01(s) - 1/(so)2 [l -so-e-"]
A(s) - I - 2-,(s)(A2 -) - 4 )(s)(  -

with

Then

4# JOdzP(z) - 4nzo e1 -[I+ HO 1 (10)

Substituting into eqn. (6) yields

V- 2rnz4+.,, n. -l+ Md, + ,+ 1- ()

at the point of zero charge (zo - 0), this expression simplifies to

AV- -41n/a 2  (12)

The potential drop across the interface is a function of only n and a,. which are
metal parameters. This, however, does not mean that the potential AV is equal to the
surface potential of the metal-vacuum interface X., since a is also a function of the
solution parameters. In the limit a ao the electronic profile tends to n(:)-
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nO(z - zo), and then eqn. (11) is not the same as the expression given in ref 14.
There are two reasons for this discrepancy. First, the term 21rnz 2 does not exist in
ref. 14, because now the charge is not localized at the plane z - 0. Secondly, the third
term in eqn. (It) is not that of ref. 14. However, if d, - o/2 then they are identical.
This means that an additional capacitance term appears because of the shift 8 in the
metal background profile.

The differential capacitance of the system is

aV a&v aav
S'-. - - 7a (13)

using eqn. (I1), we obtain
1 4w r [I ~ 4-I6 + & I + L-]
C c 7, 4w[2-z A

-d4, Il/'-] d (14)

In this expression the first term of the right-hand side is the result of the MSA
[7.81. If the solvent molecules are shrunk to point dipoles (ad - 0), one should
recover, from eqn. (14), the differential capacitance of the MGC theory. Otherwise
[141, one can define the effective dielectric constant

1M E (15)

-+

which then yields the MGC result with the effective dielectric constant 1. We must
remark that in spite of the formal resemblance, the physics is different, since the
solvent is polarized throughout the entire electric double layer.

The second term of eqn. (14) arises from the fact that the electrode charge is not
localized at z - 0. The next term is due to changes in the dipolar surface layer of the
metal as a function of the excess charge. And the last term reflects the fact that the
distance d, is also a function of the excess charge. A detailed discussion of this fact
can be found in ref. 3. At the point of zero charge this term vanishes.

Because of the intrinsic limitations of the MSA, we will limit ourselves to small
surface charge densities around the point of zero charge. Thus, for a given value of
d,, we only need to compute a for the differential capacitance C.

(i11) ELECTRONIC DENSITY PROFILE

.The ansatz (3) on the electronic density profile is particularly convenient since
n(z) only depends on the parameter a. We wil compute this parameter by
minimizing the surface excess energy U,. The kinetic energy and the non-coulombic
part of the electron-neutralizing background are not affected by the presence of the
solution, and therefore we use the expressions given in ref. 9 (eqn. 14 with a - B).

US -4...



260

Uk n 4 URC + Unh 1 [-1.6423 n2/3 + 0.25037 n'l 3 + 0.0065841

+an(log 2)/72 (16)

The pseudo-potential contribution Up, to the energy is given by (eqn. 10 of ref. I
with a - P)

- 2rn [ e-Ro (A- RA+:LO + 1)(e-:0+ e-:0)

+a(z01 +AOZ2/2 - AoR2/2 - R.) + o(7)

where A 0 and RM are the pseudo-potential parameters of Heine and Animalu (see
also ref. I).

The electrostatic energy is computed from the charge and polarization profiles,
and the potential V(z) which has been calculated in Appendix I. We find

U 1fl2 [Id -oas -a3 [ - 8a.:(azo) + 5 + 4azo e-"(,-o)

-4 e - al ol  -2az° e -(d-ZO) *- 1+-/7 J
-r -f.d,,(z) e-a('.90+ ¢CIS

The last term C consists of the remaining contributions to the energy which are
not functions of a, and thus irrelevant to our calculation.

The penultimate term in eqn. (18) represents the interaction of the electrons with
the local polarization of the solvent molecules in the solution. This contribution is
easily calculated from the Laplace transform 1(s) (eqn. 7):

- - dzP(z - *e
-

A
' -  - e-.os(a) (19)

There is also another contribution due to the repulsive interactions of the
electrons and the electronic clouds of the ions and solvent molecules [9]. These
interactions are represented by Harrison's pseudo-potentials, with parameters X, (for
ions) and Xid (for solvent). This interaction is independent of the ionic charge or
solvent dipolar orientation, and because of the use of the MSA, it will depend only
on the total density profile p1(z). Since all the particles are hard spheres of equal
diameter, a single parameter X (a weighted average of X, and X.d) will be enough for
our purposes. We obtain

U3. mfdrfdz'n(z)(r - ,')po(,') (20)

SXdp + 2 X,p.

pd + 2p.

|a



Uk,, + U.,, + Uh "[ - 1.6423 n2/ 1 + 0.25037 n'l" + 0.0065841

+an(log 2)/72 (16)

The pseudo.potential contribution Up to the energy is given by (eqn. 10 of ref. I
with a -,8)

2U n2 [-ao eA A \)(eO)
-AOR + =+-

2. a

+a(lzol + A 0z4O/2 - AOR/2 - RM)] + A  (17)

where Ao and R are the pseudo-potential parameters of Heine and Animalu (see
also ref. 1).

The electrostatic energy is computed from the charge and polarization profiles.
and the potential V(z) which has been calculated in Appendix I. We find

.- n-2 -azO O(az ) + 5 -4+ o -
,

' '

-4 -61012azo e-*dj-b)1

2a1 /

The last term , consists of the remaining contributions to the energy which are
not functions of a, and thus irrelevant to our calculation.

The penultimate term in eqn. (18) represents the interaction of the electrons with
the local polarization of the solvent molecules in the solution. This contribution is
easily calculated from the Laplace transform P(s) (eqn. 7):

2rn do Irm-- AP(z) - -- c- P(a) (19)
a fda

There is also another contribution due to the repulsive interactions of the
electrons and the- eectronic clouds of the ions and solvent molecules [9]. These
interactios are rpmented by Harrison's pseudo-potentials, with parameters X (for
ions) and Xd (for solvent). This interaction is independent of the ionic charge or
solvent dipolar otientation, and because of the use of the MSA, it will depend only
on the total density profile ft(z). Since all the particles are hard spheres of equal
diameter, a single parameter X (a weighted average of Xi and A\) will be enough for
our purposes. We obtain

u. -'Af df d:'n,(z)(J.- r')po(z') (20)

p + 2 p4 .
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where pd is the dipole concentration and p. is the (+) ion concentration. The
integration is easily performed:

U," f dz e-"''Po(:) (21)

-T e"° o(,a) (21')

where 50(a) is the Laplace transform of the total density distribution function
(po(Z) - pd(z ) 4 p.(z) + p()). We obtain

Po • -3, t (22)

where .8(' ,, I + 2 71; 1 
I )  - 71; .8'7 -"(I + 71/2) with

,1 (p,, + p.+,,,_)03

and

~(i - I (a)/(;) s 12 - 2(a) 31/(
The functions 0,(a) and 0(a) are defined by eqn. (9).

The total surface energy is then
U l Ukia + U. g h + U, + V.. + Us

Using eqns. (16)-(22) we obtain, finally,

UV . C,/a + C2a + I I a

2aRm2azo l+ [2 + , e)l _ (aRM)2] )

a)

+ I - (- + 0I("11.) (23)
The coefficients C, q, E and D are given in Appendix 2.
In eqn. (23), al the electrostatic interaction terms with the solution cancel at

zo - 0, the point of zero charge. The shift in the surface potential of the metal, when
it is taken from the vacuum to the solution is due to the electron-solution repulsive
interactions.

The minimization of U, then yields a. This parameter is then used to compute the
properties of the electrode with the aid of eqns. (1I) and (19).

7., :
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TABLE I

Values of the profile parameter a (Hg) as a function of d, and .. For the bare surface 00 - 0.901 a.u.

Is 30 45

d, - R, + e/2 0.905 0.909 0.911
d, - @/2 0.916 0.932 0.947

Two of the parameters of the problem are free, and have to be selected using
I physical intuition. They are 8 and I. It seems realistic to choose the value of 8

between 0 and R€, the crystallographic radius of the ions in the metal [9).
For water the parameter I has been estimated to be - IS. For DMSO we might

expect an even higher value since there are 54 electrons in DMSO against 10 in
water. In Table I we show -the influence of X on a assuming that d, - r/2 or
d, - A, + o/2. As expected, the repulsion term with the solution causes an increase
in the values of a. This is similar to what we found previously [9]. In Fig. 3 we have

plotted the shift in the surface potential of the metal 8Xm - 41rn(-- L) calcu-
a 0

lated at the point of zero charge as a function of the distance d,. The corresponding
case of gallium for X , 30 is also shown.

The repulsion from the solution is not enough to keep the electrons in the region

_6Xm/V

I
j

0,5-

3 5 6 7 dq/a~u.

Fill. 3. Depedmea of X. on the panee d, for differmt chaoic of ): (i) HS )- IS; (2) Hg 9- 30;
(3) Hg K- 4; (4) Oak- 30.

.4W
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3 4 5 6 d / u..

tooA 1-1),

z<dl. There is always a small charge spill-over, - 8q, in the region z > di.

8q" d, -dz-e

In Fig. 4 we show Sq(d,) for both HS and Ga. The spill-over Sq is larger for Ga

than for Hg.
In the simple model presented here. this effect has been neglected in calculating

the charge distribution and the polarization in the solution. It is clear that this
approximation is les justified for Ga than for HS. However, the mathematical tools

to include it are available and we will indeed discuss theat effects in the near future. "

The fact that there are electrons on the solution side even at the point of zero
charge, indicates that the solvent molecules must be polarized at the interface even at
the point of zero chrge. Note that the ratio 8q(Oa)/8q(Hg) is not simply the ratio
of the electroni6 densities

The differential capacitamae for the mercury electrode are given in Table 2. They

were computed from th curve AV- f(q) by nume; ial differentiation. With the

approx.m.to..is.les.jus...ie for .,atha.. . for H. Hoevr the[ mathemtical tools I
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TABLE 2

Differential capacitance of the interface C/sF cm- 2 as a function of d, and A. The concentration is
c-0.1 mollI

£ d,

a a
A. I i +0.1 nm2 2

1. 9 20.8 t00
30 9 18.7 58.8
45 8.7 16.6 43.4

parameters of this article the zero charge capacitance corresponding to an ideal
metal would be

C. M 9- 7.94 p.F cm-

We see that the total capacitance depends crucially on the distance d.

When d, is large the value of C is greater than C, but the effect of non-ideality of
the metal remains small. On the other hand, when the distance of closest approach
decreases (for instance if there is interpenetration between the metallic ions and the
particles of the solution) this effect becomes quite important and the influence of I is
not negligible (for comparison the experiment value of 18 juF cm - 2 for LiCIO4 ions
115D.

First calculations show that the differential capacitance for Ga would be greater

than for Hg, as observed experimentally.

(V) CONCLUSIONS

We have presented a realistic model of the metal-solution interface, in which the
metal is not an ideal smooth metal, but a jellium model. A simple discussion of this
model is given. The results confirm earlier calculations [1-4] that indicate that the
metal makes an important contribution to the differential capacitance C.

The solution side of our model is a mixture of hard spheres with charges and
point dipoles. No a priori separation of compact and diffuse layers is postulated in
this model, and it also does not involve the use of local dielectric constants (a
meaningless quantity). The calculations show that the solvent molecules are polarized
even at the point of zero charge. This is so because of the spill-over of electroniccharge into the solution, which produces non-zero electric fields in the metal-solu-

tion boundary layer. Although we have treated this effect only crudely, the recent
work on the GMSA [16] of the ion-dipole mixture allows a consistent calculation of
this effect.

We also show that the distance d, of closest approach of the metal ions and the
solution ions is a crucial parameter in the determination of the differential capaci-
tance C. However, this is also a drawback since the fact that d, is unknown makes

7,
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the comparison of C with experiment a not very meaningful exercise. Indeed a value
of d, which fits the experiments could be found.

However, the model that we have discussed here represents the most comprehen-
sive one that we are aware of. We are undertaking a detailed study of the influence
of various parameters, such as ionic concentration, density and dipole moment of
the solvent, etc. on the differential capacitance. The results will be published in the
near future.

ACKNOWLEDGEMENTS

Partial support of F.V. and L.B. by N.S.F. Grants CHE 80-01969 and O.N.R. t
Contract N-00014-81-C-0776, and partial support of F.V. by CONYCET, Argentina.
are gratefully acknowledged.

APPENDIX I

Electrostatic potential profile

Integrating eqn. (5), obtain (also using eqns. I and 3)
(a) For negative metal charge qM (to > 0):

v(z)= _- 2irn e0-, <- <z< 0)
a2

V(z) - 2rn(z z - )/a 2 ) (0 < z < z)

V(,) - 2rn[zo(2z - zo) - 2/a2 + Ce z-"@'/a ]  (zo < z < d,)

V(z) - 2vn[ zo(2d, - to) - 2/a 2 + e- I,-')/a2] + 4wnzo/x

+4rdz'P(z') -4-- - ') (z > d,)

(b) For positive qu (to < 0):
v(z) - - 2-n-.IeS-',I (- < z< Z0)

V(z)- -2rn [(z- o)2 + 2/a' - e-0-8,)/2] (Zo <Z <0)

V(z)-2,n[zo(2z-,to) -2/+ea<z2"+a2] (0<:<d,)

For d, < z < c the equations are those of the case qm < 0.

APPENDIX 2

We give explicit formulae for the coefficients of eqn. (23):

tnCi - [ - 1.6423n =/ + 0.25037n / + 0.0065841

I

I .
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'in 72

E (I + ( 2n)
2irn Oi- 2

D) kTX(2 +X)

These coefficients are computed once and for all for a given metal and solvent.
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